JES Requirements Document (version 1.1)

July 12, 2002

Jython Environment for Students

(JES)
Requirements Document

version 1.1

July 12, 2002

Team 3

Jason Ergle

Claire Bailey

David Raines

Joshua Sklare

Client: Mark Guzdial

Faculty Advisor: Mark Guzdial

CS3911 Summer 2002

Allison Elliot Tew

Project Description

The purpose of this project is to create a Jython programming environment, called the Jython Environment for Students (JES), which will be used by students in the new Introduction to Media Computation (CS1315) class at Georgia Tech. The target students for the class are those that are not engineering or computer science majors. Therefore the user interface for the development environment must be easy to use for people with little programming experience. Features such as keyword highlighting and descriptive error messages will be build into the program to help students as they learn how to program. The final product will be an IDE that is simpler than commercial ones, but will be easier to understand and use for students specifically taking this class.

Once finished, JES will be continually revised by Professor Guzdial during its use in class. To help with the maintainability of the program, the code must be well documented and extremely readable. The IDE will be implemented in Jython, which runs on a Java Virtual Machine. This allows the system to be platform independent. Error messages, as well as other default settings, will be included in a constants file so that they can be easily modified after the release of the project. The system will provide the basic tools an inexperienced user needs to succeed in the class. The system will be expandable, since people other than the original authors will modify it at a later date.

1) Functional Requirements

The functional requirements for JES can be separated out into three distinct categories: Jython File Interactions, Jython Interpreter Interactions, and User Interface Requirements. These three categories are listed in the following sections:

1.1) Jython File Interaction Requirements

1. The system must allow users to create new Jython files.

2. The system must allow users to open Jython files.

3. The system must allow users to save Jython files.

4. The system must allow users to edit Jython files.

5. The system must provide minimal preprocessing of Jython files, which can be defined within an external file. This file will be used for importing specific modules for the users of JES to use.

6. The system must only have one Jython file open at a time.

1.2) Jython Interpreter Interaction Requirements

1. The system must allow users to execute Jython files.

2. The interpreter should run as a separate thread so that the GUI will still function when the user is running code.

3. The system must provide a method to the users that will pop up a window that shows all visible variables.

4. The system must open the debug window displaying variables when an error occurs while running a user’s code.

5. The system must give error messages that would be clear to first time programmers.

6. The system must make error messages editable from an external file.

7. The system should highlight lines that contain errors after a user attempts to run the Jython file.

8. The system should highlight Jython keywords so users can tell keywords from non-keywords.

9. The system must allow user to interrupt the program.

10. The system must prompt the user to save before loading the program, if any changes have not been saved.

11. The system should check the file for indentation errors prior to loading.

1.3) User Interface Requirements

1. The system must have a text area for editing Jython text, similar to the Dr Scheme editor.

2. The system must have a command window for interacting with the Jython interpreter and displaying error messages.

3. The system should have windows that are resizable.

4. The system should have text areas that handle cut, copy, paste, and undo.

5. The system must have a menu bar with a “File Menu” containing “new”, “open”, “save”, “save as”, and “exit” buttons.

6. The system should have a menu bar with an “Edit Menu” containing “Cut”, “Copy”, “Undo”, and “Paste” buttons.

7. The system must have a “Load” button that will send the code from the editor window to the interpreter.

8. The system should have a “stop” button that will interrupt code that is being run by JES.

9. The system should have a menu bar with a “Help” menu containing links to HTML files written by the client.

10. The system should have an “About” option on the “Help” menu to view information about the program.

2) Non-functional Requirements:

1. The system must be usable by first time programmers.

2. The system must be able to run on Windows systems.

3. The system must be able to run on Macintosh systems.

4. The system must be able to run on Unix systems.

5. The code should be readable, well commented, and maintainable.

6. The system must be written in Jython.

7. The GUI must be implemented in Swing.

8. The system should indicate areas in the code for the client’s later use. In the future, JES will be enhanced with some additional functionality. The area where these modifications must be made will be clearly indicated in the code. These enhancements include:

· Ability to encode and turn-in files from JES

· Log user events with timestamps and include that in turn-in

· Multiple sizes of text to make use in lecture easier

3) Bibliography

1. Primary Source: Mark Guzdial, Associate Professor, Georgia Institute of Technology

2. Texts:

a. Eckstein, Robert, Marc Loy, and Dave Wood. Java Swing. California: O’Reilly & Associates, Inc., 1998.

b. Lundh, Fredrik. Python Standard Library. California: O’Reilly & Associates, Inc., 2001.

c. Pedroni, Samuele, and Noel Rappin. Jython Essentials. California: O’Reilly & Associates, Inc., 2002.

Page 4

